Automated Feature Extraction with Machine Learning and Image Processing

PD Stefan Bosse

University of Siegen - Dept. Maschinenbau
University of Bremen - Dept. Mathematics and Computer Science
Machine Learning in Image Processing
Feature Classes

Machine Learning is commonly a data-driven approximation of a functional model $f(x): x \rightarrow y$, with x as input and $+y*$ as output (target) features.

There are basically two different ML tasks:

1. **Classification** ⇒ Symbolic / categorical and discrete target feature variables
2. **Regression** ⇒ Numeric and continuous target feature variables
Feature Classes

Examples for categorical features:

- Damage (boolean decision, classification of damages like cracks, delaminations, and so on)
- Quality assessment (boolean decision, grade levels, class A/B/C, and so on)
- Geometrical objects (shapes, like lines, circles, ellipses)

Examples for numerical features:

- Material density, average pore size and/or density, crack length and/or density, and so on
- Mechanical properties (stiffness, homogeneity, and so on)
- Predictive lifetime
- Statistical aggregates (noise, average inhomogeneity, average size or density of impurities)
Image Classes

1. Two-dimensional intensity (photography) images (intensity represents surface reflection or material transmission)
 - Gray-level or multi-channel color (RGB, red, green, and blue channels);
 - Typical dimension 1000 × 1000 pixels;
 - Typical intensity resolution 8 bit (256 levels, gray or RGB), high-quality 16 bit (65536 levels)
 - Volume dimension: height × width × channels
 - Common data file formats: PNG, BMP, TIFF (not JPEG: irreversible compression creating image artifacts)
Image Classes

2. Three-dimensional tomography images (intensity represents material density)
 - Gray-level
 - Sliced image stack
 - Typical dimension 1000×1000 pixels \times 1000 (100) pixels;
 - Volume dimension: $height \times width \times depth$
 - Common data file formats: numpy, ZIP of tiff files, Vol3, RAW, DICOM (medicine) ..
Image Classes

Fig. 1. DICOM CT scan data file format merging meta and raw image data
Image Feature Extraction

Target output features can be predicted by the data-driven model basically in two ways:

1. Using raw image input data;
2. Using computed (intermediate) image features.

Examples of computed image features:

- Image intensity distribution, inhomogeneity
- Detection and characterisation of geometrical object shapes (e.g., circles)
- Image transformations, i.e.,
 - wave-number frequency transformation,
 - gradient amplification using convolutional filter operations,
 - binarisation using a threshold
Image Feature Extraction

Example: Pore characterisation in Microslices of AM parts

Fig. 2. (Left) Micrograph image of a material slice with pores/impurities (Middle) Edge detection using a Canny filter (Right) Shape characterisation by ellipse fitting

Rect. ROI + Ellipse Fit
Image Feature Extraction

Example: Pore characterisation in X-ray images from die casted plates

Fig. 3. (left) Die casted aluminum plate with pores (Center) Single projection X-ray image of plate (Right) Pore marking by semantic pixel classifier (white=pore feature)
Workflow for Object Feature Detection

Data: Micrograph images of material slices from rectangular probes procured with Additive Manufacturing technologies (metal powder laser melting).

Object Features: Elliptical pores (impurities) characterised by varying size (axis lengths of ellipse), orientation, density, and spatial distribution (inhomogeneity)

Target Features: Statistical and geometrical characterisation of pores, material density, distribution of defects

⚠️ Feature extraction should be scale, intensity, and position invariant! I.e., object detection should be possible for objects of different sizes, orientation, and position within the images and different image exposures.
Workflow for Object Feature Detection

1. Threshold binarisation of micrograph images
2. Application of Canny Filter to extract pore edges / boundaries (Parameter selection!)
3. Creation of a linear point list (coordinates of marked boundary points of pores)
4. Density-based Clustering (DBSCAN) to get groups of points belonging to one pore object
5. ROI bounding box approximation for each point cluster group (iterative expansion and shrinking)
6. Ellipse fitting (direct algebraic method), feature calculation (axis lengths, orientation, area)
7. Statistical characterisation
Image Binarization

\[I_b^1(x, y) = \begin{cases}
1 & I(x, y) \geq I_{thr} \\
0 & I(x, y) < I_{thr}
\end{cases} \]

\[I_b^0(x, y) = \begin{cases}
1 & I(x, y) \leq I_{thr} \\
0 & I(x, y) > I_{thr}
\end{cases} \]
Image Binarization

```r
i1 = load.image('http://edu-9.de/uploads/assets/pores_microsl
m1 = as.matrix(i1,mode='uint8')
print(minMax(m1[100:200,100:200]))
m1.binary = matrix(255,nrow(m1),ncol(m1),mode='uint8')
m1.binary[m1>100]=0
plot(m1.binary)
```

Ex. 1. R+ microslice image pre-processing: Normalization and Binarization (0/255)
Edge Detection with Canny Filter

Fig. 4. Canny edge detection algorithm
Edge Detection with Canny Filter

```r
use math, imager, plot

i1 = load.image('http://edu-9.de/uploads/assets/pores_microslice.png')
m1 = as.matrix(i1, mode='uint8')
m1.stats = minMax(m1)
m1.stats$mean = mean(m1)
m1 = (m1 - m1.stats$min)
m1[m1>100] = 255
print(m1.stats)
plot(m1)
```

Ex. 2. R+ microslice image pre-processing: Normalization and Binarization (0/255)
Edge Detection with Canny Filter

use math, imager, plot

m1.edges = cannyEdges(m1, t1=50)
plot(m1.edges)

Ex. 3. Canny edge filter in R+
Point Clustering using DBSCAN

- Try to group points from Canny edges to define a ROI marking a pore candidate

![Diagram](https://medium.com/@agarwalvibhor84/lets-cluster-data-points-using-dbscan-278c5459bee5)

Fig. 5. Three point classes: Core, Border, Noise
Core point
A selected point is a core point if it has at least minimum number of points ($MinPts$) including itself within its epsilon-neighborhood. In figure 1, red points are core points that have at least $MinPts=4$ in their neighborhood. If we’ve a core point, it means it is a dense region.

Border point
A selected point that is within a neighborhood of a core point but it itself cannot be a core point. In the figure 1, yellow points are identified as border points. If we’ve a border point, it means the point is in a vicinity or at the border of dense region.

Noise point
A selected point that is neither a core point nor a border point. It means these points are outliers that are not associated with any dense clusters. In the figure 1, blue point is identified as noise point.
DBSCAN Algorithm

Initially, the algorithm begins by selecting a point randomly uniformly from the set of data points. Checks if the selected point is a core point. Again, a point is a core point if it contains at least $MinPoints$ number of minimum points in its epsilon-neighborhood.

Then, finds the connected components of all the core points, ignoring non-core points.

Assign each non-core point to the nearest cluster if the cluster is its epsilon-neighbor. Otherwise, assign it to noise.

The algorithm stops when it explores all the points one by one and classifies them as either core, border or noise point.

Alg. 1. DBSCAN
ROI Bounding Box Approximation from point list

- Output from DBSCAN: List of point groups from canny edge filter
- Calculate rectangular (not rotated) average bounding boxes (pore boundary point group)

Fig. 6. An initial ROI (red) positioned at the center of mass of a point cluster is expanded iteratively by increasing one side and computing the point sum along this side. If the line is empty, the next side is expanded.
ROI Bounding Box Approximation from point list

- Bounding boxes can be computed from a pixel set list, i.e., a list of coordinate vectors

```python
use math, imager, plot
pxs = {
    [1,2],
    [3,9],
    [4,7]
}
pxs.bbox = bbox(pxs)
print(pxs.bbox)
```

Ex. 4. Example of a bbox calculation from a pixel set list
Ellipse Fitting from point list

Problem: Calculate the parameters of an ellipse equation for a set of boundary points.

General Ellipse Equation

\[
F(x, y) = ax^2 + bxy + cy^2 + dx + ey + f = 0
\]

\[b^2 - 4ac < 0\]

with \(a, b, c, d, e,\) and \(f\) coefficients.

\[
\tilde{a} = [a, b, c, d, e, f]^T
\]

\[
\tilde{x} = [x^2, xy, y^2, x, y, 1]
\]
Minimization Problem

The ellipse-specific fitting problem for a set of points \(p \) can be reformulated as:

\[
\min_a \| \hat{D} \hat{a} \|^2, \quad \hat{a}^T \hat{C} \hat{a} = 1
\]

with \(\hat{D} \) as the design matrix containing expanded ellipse equation terms, one row for each point:

\[
\hat{D} = \begin{pmatrix}
x_1^2 & x_1 y_1 & y_1^2 & x_1 & y_1 & 1 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
x_n^2 & x_n y_n & y_n^2 & x_n & y_n & 1
\end{pmatrix}
\]

and \(\hat{C} \) is a 6 \times 6 constraint matrix (independent from the number of points).
Solving an Eigenvalue Problem

- The minimization problem is ready to be solved by a quadratically constrained least squares minimization.

- We get a solution of the minimization problem by solving the Eigenvalue Problem, getting the Eigenvectors, and applying some filtering (only positive Eigenvalue are selected)

\[
\min_{\vec{a}} \left\| \hat{\mathbf{D}} \vec{a} \right\|^2, \hat{\mathbf{a}}^T \hat{\mathbf{D}}^T \hat{\mathbf{a}} = \lambda \hat{\mathbf{a}}^T \hat{\mathbf{C}} \hat{\mathbf{a}} = \lambda
\]

%%% Pseudo Code!

```matlab
function fit_ellipse(x, y) {
    D = [x.*x x.*y y.*y x y ones(size(x))]; % design matrix
    S = D' * D; % scatter matrix
    C([6, 6]) = 0; C([1, 3]) = 2; C([2, 2]) = -1; C([3, 1]) = 2; % constraint matrix
    [gevec, geval] = eig(inv(S) * C); % solve eigensystem
    [PosR, PosC] = find(geval > 0 & ~isinf(geval)); % find positive eigenvalue
    a = gevec(:, PosC); % corresponding eigenvector
}
```
Fig. 7. Examples of results from the Canny-DBSCAN-ROI-ElliFit workflow for a ADM micrograph image
Ellipse Features

Solving the general ellipse equation delivers six polynomial parameters. But relevant for pore analysis are the following parameters:

1. Major and minor axis lengths w and h
2. Orientation angle of the major axis θ
3. Area A of the ellipse
4. Center coordinates
Ellipse Features

These parameters can be derived from the general equation parameters:

\[
\begin{align*}
 c_x &= \frac{2cd - be}{b^2 - 4ac} \\
 c_y &= \frac{2ae - db}{b^2 - 4ac} \\
 w &= \sqrt{\frac{-4fac + cd^2 + ae^2}{4ac^2}} \\
 h &= \sqrt{\frac{-4fac + cd^2 + ae^2}{4a^2c}} \\
 \theta &= \tan^{-1}\left(2 \frac{b}{a - c}\right) \frac{360}{4\pi}
\end{align*}
\]
Statistical Analysis

1. Average Density (from binarized image)

2. Average pore size (from ellipse fitting), aspect ratio w/h, variance of these features

3. Average pore orientation

4. Spatial distribution of pores
Data-driven Modelling and Machine Learning

Fig. 8. (Top) Training of a data-driven machine model (Bottom) Application and inference
Convolutional Neural Networks

Convolutional Neural Networks combine typically:

1. Multi-dimensional matrix convolution with arbitrarily sized filter kernels
 - Mapping of matrix data on matrix data (commonly dimensionality expansion)

2. Fully connected neural node layers
 - Mapping of vectors on scalar values (dimensionality reduction)

3. Pooling layers
 - Data reduction (fusion)
Fig. 9. Examples of CNN architecture consisting of interlacing different class layers
Convolutional Neural Networks

![Diagram showing the relation between human vision, computer vision, machine learning, deep learning, and CNNs.](image)

Fig. 10. The relation between human vision, computer vision, machine learning, deep learning, and CNNs.

[Khan et al., 2018]
Vector, Matrix, and Tensor Data

Vector

A vector is commonly a linear list of values (real or complex type):

\[\vec{x} = [v_1, v_2, \ldots, v_n] \]

\[\vec{a} \odot \vec{b} = [c_1, c_2, c_i, \ldots, c_n], c_i = a_i \cdot b_i, n = |a| = |b| \]

\[\vec{x} \cdot \vec{w} = \sum_{i=1}^{n} x_i w_i, n = |x| = |w| \]
Vector, Matrix, and Tensor Data

Matrix

\[
\hat{m} = \begin{bmatrix}
v_{1,1} & v_{1,2} & \cdots & v_{1,i} \\
\vdots & \ddots & \ddots & \vdots \\
v_{j,1} & v_{j,2} & \cdots & v_{j,i}
\end{bmatrix}
\]

\[
\hat{a} \otimes \hat{b} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j} b_{j,i}, n = \text{rows}(a), m = \text{cols}(b)
\]
Vector, Matrix, and Tensor Data

Tensor

A scalar is a level zero tensor.

A vector is an array of numbers along an axis (level one tensor).

A matrix is an arrangement of numbers along two axes (level two tensor).

A tensor is an arrangement of numbers along n axes.
Vector, Matrix, and Tensor Data

Volumes

- Volumes are (here) three-dimensional data structures representing vectors, 2D matrix, and 3D tensor objects.

- **A volume is a packed linear array of values with a 321 Layout:**
 - First order (most significant) index dimension is depth \((sz) \)
 - Second order index dimension is width \((sx) \)
 - Third order (least significant) index height \((sy) \)

- Input, intermediate, output and kernel data can be represented by volumes
Vector, Matrix, and Tensor Data

Fig. 11. Packed linear data model (memory layout) of 3D volumes
Vector, Matrix, and Tensor Data

Operations

- Addition (elementwise)
- Multiplication (elementwise)
- Multiplication and Addition (Dot Product)
- Convolution (Mapping)
- Transformation (including Fourier)
Convolutional Layer

- In contrast to kernel-based filtering operations using commonly 3×3 two-dimensional filters, convolution can be performed here with any kernel size and dimension.

- In contrast to kernel-based filtering operations, the kernel parameters (weights) are not pre-determined. They are evolved during the ML training process.
Convolutional Layer

Fig. 12. Convolution with N filters applied to one input image (stride: shift of filter position in each dimension)
Example: Handwritten Digit Recognition

Fig. 13. CNN layers and configuration for handwritten digit recognition (using the MNIST data set consisting of $28 \times 28 \times 1$ images)