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Introduction


Detection of hidden defects and damages in materials using X-ray images is

still a challenge. Often a lot of defects are not directly visible by visual

inspection.
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Introduction


Detection of hidden defects and damages in materials using X-ray images is

still a challenge. Often a lot of defects are not directly visible by visual

inspection.

 In this work, a data-driven feature marking model is introduced performing

semantic pixel annotation in X-ray images.

Features are:

Pores, Delaminations, Cracks, or general anomalies
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Introduction

For example, an impact damage in laminate structures can be nearly invisible by a

frontal X-ray projection, although, the deformation can be seen and detected

manually by hand perception.

Hidden pores in die casted materials can be detected and analyzed by 3D CT volume

rendering, but hard to be identified in single projection images (Radiography).

Things are getting more worse if a portable low-cost X-ray radiography or semi-

tomography machine is used (called Low-Q measuring device), as introduced and

described in this work.



It is desirable to detect or mark defects, damages, or impurities by an

automated feature marking system directly in the measured images. The

impact of image quality can be relevant to the feature detection quality,

regardless of the complexity of the model behind

Stefan Bosse - Automated Damage and Defect Detection with Low-Cost X-Ray Radiography

4 / 32



Introduction

Goals of this work

1. Detect hidden defects in homogeneous metal materials by using single

projection X-ray radiography images

2. Transition from industrial non-portable, heavy, and expensive X-ray measuring

devices (>500k€) towards mobile, lightweight, portable, and low-cost X-ray

radiography systems (< 1k€)
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X-ray Measuring Devices

Basically we can classify X-ray measuring devices and systems into three classes with

respect to Non-destructive Testing (NDT) in engineering, especially for metals and

composite materials:

1. High-Q Micro-CT devices with micro focus tubes and optional optical

magnification 

Focal spot diameter below 50 μm 

direct imaging SSD detector with resolution above 100µm, but effective resolution

below 100μm, SNR > 200;

2. Mid-Q Industrial systems 

Focal spot diameter above 200 μm, typically 0.8 mm 

Direct imagining SSD detectors, detector resolution above 100μm, effective

resolution above 100μmSNR > 100;

3. Low-Q Low-cost system (standard focal spot diameter above 800 μm, typically 0.8

mm), effective resolution typically above 50μm, SNR < 50.
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X-ray Measuring Devices

An X-ray measuring system consists of:

1. X-ray source (commonly cone beam with a specific focal size diameter fsd) , a X-

ray tube with

cold-emission

hot-emission (Coolidge)



In cold-emission, the electrical field extracts and accelerates electrons from the

cathode to the anode, in hot-emission there is a heated free electron source,

and the electrical field only accelerates the electron to a target anode material.

Cold emission tubes lack independent tube current control (dependent on the

tube voltage).
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X-ray Measuring Devices

2. X-ray detector.

direct conversion system

indirect conversion system, directly coupled

indirect and imaging system, indirectly coupled



In a direct conversion system the X-ray photons will generate electrons (photo

effect) directly in the solid-state device, in an indirect conversion system a

conversion material (scintillator) is required to convert X-ray photons into

visible light photons, finally converted to electrons in a solid-state detector.

Solid-state detectors are typically Coupled Charge Devices (CCD) or CMOS pixel

detectors. Although, used in an indirect conversion system sensitive to visible light, the

are still sensitive to incident X-ray radiation producing shot or popcorn noise.
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Low-Cost X-Ray Device

Fig. 1. Low-cost X-ray Radiography and CT instrument (a) General overview (b) Details of the detector (all

dimensions in mm)
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Low-Cost X-Ray Device

Fig. 2. Prototype of the low-cost X-ray Radiography and CT instrument
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Low-Cost X-Ray Device

Fig. 3. Electronic schematic of the low-cost X-ray source

Stefan Bosse - Automated Damage and Defect Detection with Low-Cost X-Ray Radiography

11 / 32



Detector

The resolution of an X-ray detector system is limited mainly by two parameters:

1. Detector pixel size dp  multiplied by the optical image magnification, i.e., dpMopt;

2. The X-ray magnification Mxray;

3. The geometrical unsharpness a with increasing Mxray  wrt. to the focal spot diameter

fb .

The X-ray magnification and unsharpness (resolution limit) is given by:

Mxray =

a = ( )fb
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Scintillator
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Fig. 4. (a) Emission spectrum of the scintillator material [CAW23] (b) Spectral sensitivity of the IMX290

image sensor [FRA19] (c) Resolution of the scintillator screen in dependence of the material thickness and

amplification factor [CAW23] (OG-2: conversion factor 100, OG-4: 200, and so on) (d) Dot pattern measured

with Low-Q X-ray detector (e) USAF 1951 pattern recorded with 55 kV/0.7 mA/average of 4 images (f)

Intensity profiles and contrast at 2 an 8 LP/mm from (e)
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Noise

The exposure time tx  defines the noise level and the signal-to-noise ratio (SNR)

achievable with the given X-ray power Px .

The industrial reference Mid-Q system has a pixel area size of about 40 kμm
2
,

whereas the Low-Q detector has a pixel area of only 9μm
2
!

The direct imaging Mid-Q system has a tight coupling of the scintillator to the

detector pixels via a FOP (low attenuation), whereas the indirect imaging system

poses optical losses in lenses and coupling components.

The Mid-Q system requires typically exposure times in the order of 100 ms (with

Px=200 W), whereas the Low-Q device requires at least 5000 ms (with Px=50 W).
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More Noise

The CMOS image sensor is sensitive to X-ray radiation, not too much to use the

image sensor directly, but with respect to popcorn and shot noise.

Popcorn noise is a random seed phenomenon, i.e., in some pixels there is an

electron wall breakthrough leading to saturated (white) pixels. Fortunately, after

the pixels are cleared (before the sampling of the next image), the saturation is

eliminated and two succeeding images will commonly not pose the same

flooded pixels.

Commonly, the image device is not directly exposed the X-ray beam. Instead, a

mirror under an angle of 45° is used and the camera is placed with a 90° angle with

respect to the X-ray beam axis (see [BAL22], for example). We tried the same

approach, but we observed:

1. An expected reduction of light intensity (mirror reflectivity < 1) and more geometric

distortions;

2. There is still shot noise (although, strongly reduced, but not totally vanished).
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More Noise


Therefore, we placed the camera again in the X-ray beam and using a simple

multi-image noise compensation method. It removes shot noise, and reduces

non-gaussian X-ray and gaussian (electronics) noise, too.
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More Noise


Therefore, we placed the camera again in the X-ray beam and using a simple

multi-image noise compensation method. It removes shot noise, and reduces

non-gaussian X-ray and gaussian (electronics) noise, too.


Choosing the γ threshold is crucial because not all shot noise pixels reach the

maximum camera intensity, and some will only be reduced by averaging if

they are below the chosen threshold.
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More Noise: Reduction Algorithm

σ0 := Σ[1]
∀ (x,y) ∈ coord(σ0) do
  if σ0[x,y] > γ then
    ∀ σ ∈ { Σ / σ0 } do
      if σ[x,y] < γ then
        σ0[x,y] := σ[x,y]
        break
      endif
    done
  endif
  ∀ σ ∈ { Σ / σ0 } do
    if σ[x,y] < γ then
      σ0[x,y] := σ0[x,y] + σ[x,y]
    else
      σ0[x,y] := σ0[x,y] + σ0[x,y]
    endif
  done
  σ0[x,y] := σ0[x,y] / |Σ|
done

Alg. 1. Shot (popcorn) noise removal and image averaging. γ is a noise threshold with respect to the image

pixel value range (commonly 0.9max) and Σ is a set of images. The result of the averaged and noise corrected

image is σ0
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More Noise: Reduction Algorithm

Fig. 5. (Top) Example images without (left) and with (right) noise cancellation (Bottom) Example line

intensity plots with flooded pixels (left) and residual noise only (right)
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X-ray Image Simulation

 As common in engineering applications, the data variance of experiments and

specimens is limited.
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X-ray Image Simulation

 As common in engineering applications, the data variance of experiments and

specimens is limited.

Specimens with impacts damages pose a wide range of different micro and macro

damages, e.g., delaminations, cracks, kissing bond defects, and many more.

Therefore, the measurement (X-ray image) of one specimen delivers only a few

features, and the number of specimens is limited, too.

High-pressure Die casted aluminum specimens contain a high number of gas pores

(here named defects), and the number of specimens can be high.
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X-ray Image Simulation

 As common in engineering applications, the data variance of experiments and

specimens is limited.

Specimens with impacts damages pose a wide range of different micro and macro

damages, e.g., delaminations, cracks, kissing bond defects, and many more.

Therefore, the measurement (X-ray image) of one specimen delivers only a few

features, and the number of specimens is limited, too.

High-pressure Die casted aluminum specimens contain a high number of gas pores

(here named defects), and the number of specimens can be high.


Even if the feature and data variance is sufficient, there is no ground truth of

the data, especially required for accurate labelling of training data for

supervised Machine Learning (ML).
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X-ray Image Simulation

Fig. 6. Modelling of a die casted aluminum plate with gas pores using Monte Carlo simulation. Geometric

parameters of real measure pores are used to create synthetic pores at random positions. (Left) Programmatic

CSG model (Center) Rendered 3D model with synthetic pores / holes (Right) Simulated X-ray Image
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For this reason, in this work X-ray images are computed (simulated) numerically

from synthetic specimens based on a CAD model and Monte-Carlo simulation

techniques.
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Feature Detector: Semantic Pixel Classifier



The main objective of this work is to use an automated feature detector applied

to single projection X-ray images delivered by a Low-Q (low-cost) X-ray

instrument to detect hidden defects in materials, here specifically pores in

high-pressure die casted aluminum plates.
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Feature Detector: Semantic Pixel Classifier



The main objective of this work is to use an automated feature detector applied

to single projection X-ray images delivered by a Low-Q (low-cost) X-ray

instrument to detect hidden defects in materials, here specifically pores in

high-pressure die casted aluminum plates.

The input is an X-ray image, the output is a feature map image that marks pores

(binary classifier) and provides the geometric parameters and position

A pixel classifier is commonly implemented with a Convolutional Neural Network

(CNN), mostly with only one or two convolution-pooling layer pairs.

The input of the CNN is a sub-window masked out from the input image at a

specific center position (x,y). The output is a class (or a real value in the range

[0,1] as an indicator level for a class). The neighbouring pixels determine the

classification result. th window with the CNN application is moved over the

entire input image producing the respective feature output image.
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Feature Detector: Semantic Pixel Classifier

Fig. 7. Semantic pixel classifier applied to X-ray single projection images to detect and mark hidden defects
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Results
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Fig. 8. Feature marking for different X-ray images using two measuring instruments and synthetic images.

Low-Q images have a different scaling and region compared to the Mid-Q and synthetic X-ray images. aluDC:

Die casted aluminum plate with pores, aluRO: Rolled and polished aluminum plate without pores.
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Results

 The pixel classifier was trained with synthetic images and applied to real

images.

1. The semantic pixel classifier marks about 95% of the pores in the synthetic X-ray

image

2. The density (probability?) of marked pores in the Low-Q images are higher

compared with images from Mid-Q device

3. But! The semantic pixel classifier is sensitive to X-ray noise ⇒ The AluRO probe

shows false predictions (expected: no predictions because there are no pores)
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Conclusions


But overall the pixel classifier trained with synthetic simulated X-ray images is

able to detect pores in X-ray single projection images even in the case of the

Low-Q device!
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Conclusions


But overall the pixel classifier trained with synthetic simulated X-ray images is

able to detect pores in X-ray single projection images even in the case of the

Low-Q device!

 The semantic pixel detector is sensitive to noise (although, significant

Gaussian noise was added to the training examples)
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Conclusions


But overall the pixel classifier trained with synthetic simulated X-ray images is

able to detect pores in X-ray single projection images even in the case of the

Low-Q device!

 The semantic pixel detector is sensitive to noise (although, significant

Gaussian noise was added to the training examples)

 The Low-Q measuring device competes with a 500 times more expensive

industrial measuring device.
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End.

 Thank you for your attention. All questions are welcome!

Automated Damage and Defect Detection with Low-Cost X-Ray Radiography using Data-driven Predictor

Models and Data Augmentation by X-Ray Simulation

Further information can be found here: http://edu-9.de
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