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Introduction

From 5000 BC - 1900 AC: Analog Calculations using Mathematics and intelligent

human brains

From 1920 AC - TODAY: Digital Computation using Electronics

From 1873 AC - 1970: Analog Computation using Mechanics and Electronics

From 2020 AC - FUTURE?: Analog Computation revisited using printed

Electronics?


Digital Computation bases on discretized binary digital logic, Analog

Computation bases on continuous difference amplifiers (Operational

Amplifier)!
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Introduction

Fig. 1. An Analog Computer: Polish analog computer AKAT-1, from 1959
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Introduction

Fig. 2. Evolution of Neural Networks: Bio Analog - Mathematical - E-Digital - E-Analog & Printed?
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Motivation

Arguments against digital systems:

1. Digital computations introduces numerical discretization and rounding errors that can be significant for

highly non-linear functional networks;

2. Transistor resource demand and constraints:

Digital logic: ANN with 10 nodes requires more than 1000 transistors

Computer logic: Resources independent from problem size; about 1E6-1E10 transistors!

Analog electronics: ANN with 10 nodes requires at least 120 transistors (as shown in this work)

3. Electrical power requirements and constraints:

Digital logic: about 1-10 mW

Computer logic: about 100 mW-100 W

Analog electronics: below 1 mW

4. Robustness and safety?

5. Printed Eöectronics - a key enabler technology, but still challenging and not suitable for large (digital)

circuits (below 100 transistors)
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Long- and short-term Goals

1. Implementation of digital algorithms with analog electronics

2. Analog computational circuits as a co-working system in a mixed analog-digital

system

3. Analog computational circuits as a replacement for digital computation with pure

analog systems

4. New design methodologies

Scaling and transformation algorithms (from digital to analog circuits)

Training of parametrizable analog models

Functional design of electronic circuits with probabilistic methods (e.e.g,

evolutionary algorithms)

Simulation-in-the-loop algorithms

Parametrizable hardware-in-the-loop methods
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Applications

Signal pre- and post-processing

Frequency filters

Integration

Wavelet decomposition using filter banks

Signal hull generation (analytical signal transformation)

Frequency decomposition (Fourier transform)?

Correlation?

Function regression

Artificial Neural Networks (e.g., damage predictors)

Machine Control

Rapid prototyping with field-programmable computers

SoC Digital logic: Yes, available (FPGA)!

SoC Analog circuits: Maybe (FPAA), Not suitable?

Discrete Matrix Analog circuits with AD interface: Not yet available, but Yes suitable
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[https://arxiv.org/pdf/2302.09002]

Applications

Material-integrated Intelligent Systems

Fig. 3. Highly miniaturized sensor node (Lüssem et al.,IMSAS, Uni. Bremen)
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Pro-Cons

Digital Circuits

[+] High signal(information)-to-noise ratio, noise immunity 

[-] Discretization errors 

[-] High transistor count (TC) 

[-] High(er) power consumption

Analog Circuits

[+] No discretization errors 

[+] Lowest power 

[+] Lowest TC 

[-] Lower SNR 

[-] Noise, noise sensitivity...

 Accuracy versa Precision!
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Accuracy versa Precision

Accuracy refers primarily to the relationship between a simulation and the primary

system it is simulating or, more generally, to the relationship between the results of

a computation and the mathematically correct result.

Accuracy is a result of many factors, including the mathematical model chosen,

the way it is set up on a computer, and the precision of the analog computing

devices.

Precision,is a narrower notion, which refers to the quality of a representation or

computing device. In analog computing, precision depends on resolution (fineness

of operation) and stability (absence of drift) and may be measured as a fraction of

the represented value
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Implementations
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Field Programmable Gate Array

Digital circuits, look-up tables, flip-flops's,

programmable switches, DSP

Field Programmable Analog Array

Switched Capacitor Blocks and Matrix

Switch
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Analog Computation versa Digital Signalprocessing

 DSP is mainly signal processing in time and frequency domains. Analog

Computation is more general and includes DSP as a sub-set.

The Field Programmable Analog Array (FPAA) technologies focus on signal pre-

processing.

Complex computation (e.g., solving equations or computation of neural networks) is

not possible with FPAA - too limited architecture.

So the FPAA technologies rised in 2015-2022, but now vanishes again!

In contrast, FPGA sattled in the digital market even for general purpose solutions

including processor designs.

FPAAs are not Analog Computers (as built in the 1940-1960's)

Stefan Bosse - Analog Computing: Analog Electronics Neural Networks

12 / 44



[Ulmann, 2013]

History

Fig. 4. 1946: Hoelzer's differentiator circuit - well okay it performs analog computations
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[Ulmann, 2013]

History

Fig. 5. (Left) 1946: Hoelzer's differentiator machine (Right) Programming of AC - far beyond what we want
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[Ulmann, 2013]

 Main applications were solving differential equations using differentiators,

integrators, or a composed circuits of differentiator and integrator circuits

Fig. 6. Solution of a differential equation of fourth degree y''''+ay'''+by''+cy'+dy=f(t) for a time dependent

signal f(t) with a feedback circuit employing two differentiators and two integrators
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Functioncal Composition with Basic Cells

(a)

k
k1 
k2 
k3 
k4 

(b) (c)

(f) (h)

f(t)

(d) (e)

(i)(g)

Fig. 7. Building blocks for analog computers: (a) Negating Summer (b) Scaling (c) Negation (d) Multiplier (e)

Divider (f) Integrator (g) Differentiator (h) Function block (i) Conditional switch
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Architectures

ACS AD DC DC

ADACDA

ACS A DC AC 
Sim

(a) (b)

(c) (d)

Fig. 8. (a) Analog Computers AC for signal pre-processing connected to Digital Computers DC (b) Analog

Computers as Co-processors for Digital Computers (c) Standalone Analog Computers (d) Simulated Analog

Computers
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[http://www.ecircuitcenter.com/Circuits/opmodel1/opmodel1.htm]

Operational Amplifier

The elementary cell for holonic construction principle

Fig. 9. OPAMP replacement model with voltag sources
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Operational Amplifier: Basic Circuits
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Fig. 10. "Stateless" Circuits (a) Inverting Amplifier (b) Non-inverting amplifier (c) Inverting Sum Amplifier

(d) Difference Amplifier / Universal summing amplifier
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Operational Amplifier: Basic Circuits
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Fig. 11. "Statefull" Circuits (a) Summing Integrator (b) Summing Differentiator (c) Oscillator
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Fig. 12. More arithmetic circuits with non-

linear element

Fig. 13. Frequency domain operation (State Variable Filter

Circuit)

Operational Amplifier: Basic Circuits
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Mathematics versa Reality

Real OPAMPs have a lot of deviations from the ideal mathematical OPAMP with

different criticality levels:

1. Limited open-loop gain (can be low as 50!) ⇒ criticality=middle

2. Limited frequency bandwidth ⇒ criticality=low

3. Non-linearity ⇒ criticality=middle

4. Drift, leakage currents (from output to input) and bias offsets ⇒

criticality=high

5. Temperature dependent transfer function ⇒ criticality=high

6. Clipping (output voltage limited by supply voltage) ⇒ criticality=high

7. Supply voltage dependent transfer function ⇒ criticality=middle

8. Noise ⇒ criticality=low-middle
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Mathematics versa Reality


If we want to perform calculations on stationary (DC) signals, some circuits

need additional circuitry to deal with the deviations from the ideal OPAMP

model.

An integrator which is useless without control logic due to drift and leakage ...
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Artificial Neural Networks

Fig. 14. ANN with three layers
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Artificial Neural Networks

Mathematical Model

Fig. 15. ANN with three layers and matrix algebra calculations (digital model)
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a(→x) = f(u(→x) + b)

u(→x, →w) =
n

∑
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xiwi

f(u) =
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Σ f
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u y
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The Perceptron

The preceptron function a consists of

two functions:

u: linear weighted summation

f(u): linear or non-linear activation (transfer) function

weights can be negative, zero, or positive

output from u is not limited

output from f can be limited
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The Perceptron

From digital to analog:

Linear Weighted Summation

Just a summing amplifier. But wait, there is something more to talk about. Discussed

next ...

Activation Function

It depends. The ReLu function can be approximated with a diode-based circuit, a

sigmoid function (as used in this work) basing on exponential functions can be

approximated with a non-linear component, e.g., a bipolar or junction FET transistor

(in non-linear range). Other functions like tanh are difficult to be implemented with

only a few electronic components.
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Minimal Operational Amplifier Circuit OPAMP3

Fig. 16. A minimal OPAMP circuit consisting of a differential and current amplifier requiring only three

bipolar transistors. Output swing is asymmetric and about 75% VCC/VEE
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Minimal Sigmoid Function Circuit SIGMOID3

Fig. 17. A minimal sigmoid circuit consisting of a single differential and current amplifier with unity gain

requiring only three bipolar transistors. Output voltages are in the range [0,3V]
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Minimal Sigmoid Function Circuit SIGMOID3

Fig. 18. The sigmoid three-transistor circuit has different x- and y-scaling compared with the mathematical

function, but conforms with high accuracy to the scaled mathematical function.The x-scaling can be set by the

input resistor multiplication factor k. The y-scale is always approximately in the value range [0.05V,2.9V]. The

SIGMOID3 circuit needs a slightly odd power supply [-1V,3.7V]
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Perceptron Circuit

Fig. 19. Single perceptron (neuron) circuit using one OPAMP3 circuit for all negative weights and negative

bias, one OPAMP3 circuit for positive weights and positive bias (mutual exclusive), one difference OPAMP3

circuit combining both temporary outputs, and finally applying the sigmoid function with the SIGMOID3

circuit.
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Perceptron Circuit

The weights are independent amplification factors that can be negative or positive.


We cannot use the full summation circuit. The negative weights can be

adjusted independently, but the gains of the positive branch weights are

linearly dependent making the design process a mess and highly challenging.

Therefore, we use always inverting summing amplifiers with a final difference

amplifier (unity gain) to combine the positive and negative weights branches (and to

invert the polarity of the "positive" weights)

But OPAMP3 differs from real and much more from ideal OPAMPs, and

amplification computations from weights requires corrections and the maximal

weight is limited (about w=Gmax=50).
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The Design Process

Digital 
Model

Digital 
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Fig. 20. (a) Indirect synthesis with digital-analog model transformation (b) Direct synthesis and analog model

design with simulation-in-the-loop
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The Design Process


In this presentation only methodology (a) will be used. It is expected that the

analog simulation is close to a hardware implementation using models for real

components.

We have to capture the OPAMP clipping, i.e., the limited output voltage and the

maximal gain that can be achieved, and finally a relevant input resistance that

affects the total gain.

 This is only possible if we use a modified digital ANN model including these

analog limitations.
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The modified Digital ANN Model (1)

Σ sigmoidClipping

in_scale out_scaleout_shift[min,max]
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C
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Fig. 21. Modified digital neuron model with combined negative and positive weight paths. The weights as well

as the intermediate values are clipped. Finally, the activation function must be scaled according to the analog

version.

Stefan Bosse - Analog Computing: Analog Electronics Neural Networks

35 / 44



The modified Digital ANN Model (2)
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Fig. 22. Modified digital neuron model with separate negative and positive weight paths

We are using and modified the ConvNetJS software framework to implement the

modified digital model
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Experiments

Benchmark IRIS dataset

Task: Classification of flowers (sub-species)

Four numerical input variables (geometrical sizes)

One categorical output variable (three classes)

Two classes are linearly separable, one only non-linear

151 example instances

The model

Fully connected ANN with a [4,3,3] layer structure.

The first input layer is a dummy layer and not included in the analog model

All neurons uses (modified) sigmoid functions

The summer clipping was set to 10 (± 10V), the weight clipping was set to 5.
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Experiments

Analog Circuit

SPICE3 model with 2N3904/2N3906 transistor models

15 OPAMP3 circuits, 9 SIGMOID3 circuits

72 transistors

76 external resistors, 6*15+9*9=171 internal resistors, total 247

Power supply: VCC=15V, VEE=-10V
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Experiments

Classification Results

              Prediction                              Prediction            
              C     A     B                           C     A     B         
Reference  C  50    0     0             Reference  C  50    0     0         
           A  0     51    0                        A  0     51    0         
           B  4     0     46                       B  15    0     35        

N  : [50,51,50] (151)                  N  : [50,51,50] (151)              
TP : [50,51,46] (147)                  TP : [50,51,35] (136)              
TN : [97,100,101] (298)                TN : [86,100,101] (287)            
FP : [4,0,0] (4)                       FP : [15,0,0] (15)                 
FN : [0,0,4] (4)                       FN : [0,0,15] (15)                 
Unique    : [C,A,B]                    Unique    : [C,A,B]                
Error     : [0.00,0.00,0.08] (0.03)    Error     : [0.00,0.00,0.30] (0.10)
Accuracy  : [1.00,1.00,0.92] (0.97)    Accuracy  : [1.00,1.00,0.70] (0.90)
Precision : [0.93,1.00,1.00] (0.97)    Precision : [0.77,1.00,1.00] (0.90)
Recall    : [1.00,1.00,0.92] (0.97)    Recall    : [1.00,1.00,0.70] (0.90)
F1 Score  : [0.96,1.00,0.96] (0.97)    F1 Score  : [0.87,1.00,0.82] (0.90)
―――――――――――――――――――――――――――――――――――    ―――――――――――――――――――――――――――――――――――
Digital Model                          Analog Model (T=27"C)

Fig. 23. Comparison of classification results with the digital and analog model
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Experiments

Classification Results

             Prediction                                Prediction            
                 C    A     B                              C    A     B      
Reference  C 50.00 0.00  0.00             Reference  C 50.00 0.00  0.00      
           A  0.00 51.00 0.00                        A  0.00 51.00 0.00     
           B 13.00 0.00 37.00                        B 17.00 0.00 33.00      

N  : [50,51,50] (151)                     N  : [50,51,50] (151)              
TP : [50,51,37] (138)                     TP : [50,51,33] (134)              
TN : [88,100,101] (289)                   TN : [84,100,101] (285)            
FP : [13,0,0] (13)                        FP : [17,0,0] (17)                 
FN : [0,0,13] (13)                        FN : [0,0,17] (17)                 
Unique    : [C,A,B]                       Unique    : [C,A,B]                
Error     : [0.00,0.00,0.26] (0.09)       Error     : [0.00,0.00,0.34] (0.11)
Accuracy  : [1.00,1.00,0.74] (0.91)       Accuracy  : [1.00,1.00,0.66] (0.89)
Precision : [0.79,1.00,1.00] (0.91)       Precision : [0.75,1.00,1.00] (0.89)
Recall    : [1.00,1.00,0.74] (0.91)       Recall    : [1.00,1.00,0.66] (0.89)
F1 Score  : [0.88,1.00,0.85] (0.91)       F1 Score  : [0.85,1.00,0.80] (0.89)
―――――――――――――――――――――――――――――――――――       ―――――――――――――――――――――――――――――――――――
Analog Model (T=80°C)                     Analog Model (T=0°C)

Fig. 24. Comparison of classification results of the analog model for different temperatures
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Conclusions

1. A computational digital model can be transformed into an approximated analog

model based on basic cells of an Analog Computer and by using Operational

Amplifier technologies.

2. The digital model must be modified to reflect analog electronics limitations

(clipping of output voltages and limited amplification).

3. The loss of precision is acceptable, compared with digital circuits the transistor

count is very low.

4. The approximation of the generic OPAMP and non-linear function blocks (sigmoid)

required only 3 bipolar transistors.

5. We showed the suitability of the digital-analog model transformation approach with

a simple Artificial Neural Network.

6. The circuit design process (at the end of the flow) requires adaptation due to non-

ideal circuit behavior.
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Outlook

Next steps

0. Post fine-tuning of the analog model

1. Test of regression models instead of classification (approximation of polynomials of

n-th degree as a gold standard case), wrt. accuracy, precision, temperature

dependence

2. Replacing bipolar transistors with junction FET, unmodified circuits, test &

evaluation

3. Evaluating the deployment of electro-chemical organic transistors, creating and

adapting SPICE3 models, developing modified circuits matching these transistor

models.

4. Designing circuits for signal pre-processing, e.g., wavelet decomposition, signal hull

approximation.

5. Moving towards the analog model centered design flow.

6. Surrogate Modeling of analog circuits with ML
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End.

 Thank you for your attention. All questions are welcome!

Analog Electronics Neural Networks: Analog Computing combined with Digital Data Processing Revisited

Further information can be found here: http://edu-9.de
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