
Data-driven Parameterizable Generative Adversarial Networks

for Synthetic Data Augmentation of Guided Ultrasonic Wave

Sensor Signals

Stefan Bosse1,2

1University of Bremen, Dept. Mathematics & Computer Science, Bremen,

Germany
2University of Siegen, Dept. Mechanical Engineering, Siegen, Germany

Abstract. Synthetic data generation and augmentation is often the only solution

to create data-driven robust and generalized damage predictor models. Ideally, the

predictor model can be trained with synthetic data only, finally applied to real

measured data. In this work, we present and evaluate different synthetic data gen-

eration methodologies using model-free data-driven generator models like Genera-

tive Adversarial networks (GAN) using model-based analytical functions, physical

simulation, and experimental data. We will demonstrate the challenges and pitfalls

of synthetic data generation using Machine Learning for the generation of Guided

Ultrasonic Waves (GUW) time signals.

1. Introduction

Detecting and characterizing hidden damages in composite materials like Fibre-Metal
Laminates (FML) remains a challenge. Guided Ultrasonic Waves (GUW) or X-ray im-
aging are commonly used to detect these damages, but their interpretation remains lim-
ited, in applications like Non-destructive Testing (NDT) and Structural Health Monitor-
ing (SHM) as well. Data-driven predictor models can detect damages in structures us-
ing GUW time-dependent signals, but the experimental training data lacks variance,
statistical strength, and sufficient coverage of the hyper-parameter space. Often experi-
mental data lacks ground truth annotations of target parameters. Synthetic data aug-
mentation is often the only solution to create robust and generalized damage predictor
models. Synthetic sensor data can be generated using model-based, model-assisted, or
model-free methods. However, numerically computed GUW signals by applying
Finite-Element Methods or by solving field equations show poor reality conformance
due to too much constraints and simplifications, especially in non-homogeneous materi-
als, composites, and laminates. Recent developments in data-driven generative models,
e.g, Generative Adversarial (Neural) Networks (GAN) [1], commonly driven by a ran-
dom generation process, include deterministic style vectors to generate specific signal
data [2], determining constraints such as damage size, position, transducer positions,
material and environmental properties. These new architectures aim to reduce the im-
pact of environmental changes on data-driven damage predictor models by using

1

Stefan Bosse

parameterizable synthetic data generation. At least in theory. In practice, these
controllable GAN architectures must be validated to ensure sufficient reproduction of
signal features related to damages and defects, commonly a small fraction of an entire
signal. In [1]. the authors claim to create B-scan wave images in accordance with
experiments using pseudo defects. In [3], a GAN is composed of bi-directional state-
based recurrent LSTM cell networks to generate ECG signals. Both applications differ
from this work because here the relevant damage feature are hidden in small temporal
and amplitude fractions compared with the base-line signal making training of
generative models a challenge. The generation of GUW signals comparable to this
work was reported in [4] using a styled GAN and experimental data from
OpenGuidedWaves data set. This data set contains measurements with pseudo defects
and only 8 different defect positions. the authors claim to generate GUW signals in
accordance with real data by controlling the generation process. The shown signals
show artifacts which are observed by our experiments, too, and considered as critical
for training ML predictor models.

We will elaborate these new architectures and discuss the possibilities and challenges
of using such GAN models for data generation of US signals in GUW-based SHM ap-
plications, as originally proposed in [1]. We will have a focus on simplified measuring
data used for training of data-driven predictor models addressing homogeneous and
composite materials (e.g., but not limited to, FML) with hidden damages, and show
some preliminary results and fundamental discussions. This paper is a review as well
as experimental elaboration.

We will conduct and evaluate simple experiments with pitch (generator) and catch
(sensor) time-resolved GUW signals, commonly used in NDT and SHM applications.
The pitch signals are created with an analytical model, the catch signals are computed
by a 2-dim simulation using a visco-elastic wave propagation model and a simulator
(based on SimNDT [5]) using a elastodynamic finite integration technique. We present
a model zoo that is in principle suitable for signal generation, discussing the pro and
cons of the models using experiments or more theoretical considerations.

2. Methodology and Goals

The basic idea is to train data-driven classification and regression models suitable for
NDT and SHM applications by using synthetic data only, finally applying the models
to real data without loss of accuracy and quality, perhaps by fine-tuning the models.
The overall taxonomy of the methodology for synthetic data generation addressed in
this work is shown in Figure 1. The synthetic data could be generated in simulation,
but due to restrictions and the reality gap this can be an error prone task. Generative
models can be trained by using real, real and simulated, or simulated data. The genera-
tive models should be controllable by a parameter vector optimally with independent
model parameters, like in any conventional signal generator. Additionally, the genera-
tions process should be randomize with respect to Monte Carlo simulation to created
sufficient variance in the generated signals.

2

Stefan Bosse

!"#"$%&'("
)*+",
-$%'#'#.

/#%,0&'1%,
)*+",2

3402'1%,
5'67,%&'*#

89:"$'6"#&2

!"#"$%&'("
)*+",

57$$*.%&"
)*+",

5:%$2"
-$%'#'#.;<%&%

!/=

5&0,"+;!/=

>*#+?;!/=

3@==

>*6:,"&"
50#&4"&'1;<%&%

3$"+'1&'(";
)*+",
-$%'#'#.

3$"+'1&'("
)*+",

50#&4"&'1;<%&%

89:"$'6"#&%,;<%&%

-%$."&
A"%&7$"2

:B :#

3%$%6"&"$;C"1&*$

DB DE

F%#+*6;("1&*$

Figure 1. Taxonomy of the methodology for synthetic data generation addressed in this

work. Data from a controllable but randomized generator model is used to train a

predictor model. Different architectures are investigated in this work.

The assessment of the quality of the synthetic signal generator is critical and a chal-
lenge. In many works, distance measure functions are used or correlation analysis.
Both methods can only applied to signals with strong features, i.e., the modifications of
a signal with respect to an anomaly, damage, or defect of the material to be examined.
GUW signals used in NDT and SHM applications show typically only weak features
(response) with respect to structural or material deviations. One possible outcome is the
application of a feature predictor model trained with experimental or simulated data to
the synthetic data to validate synthetic signals. This is the approach we have chosen in
this work.

3. Models

The generative models considered in this work should be used to augment the sparse
experimental data set of GUW time-resolved signals. There are three classes of genera-
tive models:

1. Surrogate models without a random latent input space (pure functional) controlled
by a mostly fully linearly independent and separated (not entangled) parameter
space (i.e., independent control of specific parameters). The surrogate generative
model is trained directly with examples in a supervised way.

3

Stefan Bosse

2. Pure random generative models that cannot be controlled by a parameter vector
(e.g., damage location). These models are trained indirectly by another assessment
instance and never see the original examples.

3. A hybrid between class 1 and 2, controlling the signal generation by parameter
vector, which is commonly entangled not allowing fully independent control of
the signal generation.

Figure 2 shows three different model architectures that are investigated and evaluated
in this work. More advanced architectures are shown in Figure 3.

!
"
#$
%
%

&

'

(

!
"
#$
%
%

)**+,-.)

"
(
/
0
1
2
3
45
/
6

)**+,-.)

"
(
/
0
1
2
3
45
/
6

"
(
/
0
1
2
3
45
/
6

1**+,-.)

78+,-.1

95:;!"#"%%3;<=/=45>(4
?
5
@A
(
(
B

+1-

"
(
/
0
1
2

C+,-.)

!
B5
>>
=
/

9D:;!"#<$%

!
"
;$
%
%

+)8*'-

!
"
;$
%
%

+C*'-

!
"
;$
%
%

+E-
!
"
;$
%
%

+E-

+F-

!
"
;$
%
%

+1**-

!
"
;$
%
%

+G*-

!
"
;$
%
%

+)-

B=5HIJ=BK >5/LB=5HIJ=BK B=5HIJ=BK B=5HIJ=BK6MNO(MP

!5H=Q

<=/=45>(4 2M6R4MOM/5>(4

>5/L

+E- +E-

+E-

9R:;!"#"%%3;<$%

!
"
;$
%
%

+E#8-

4=BK

<=/=45>(4

"
(
/
0
1
2
3
45
/
6

,1+,-.)

>5/L

"
(
/
0
1
2
3
45
/
6

,1+,-.1

>5/L

?
5
@A
(
(
B

+1-

"
(
/
0
1
2
3
45
/
6

,1+,-.)+F-

!
"
;$
%
%

>5/L>5/L

+E-
+E-

"
(
/
0
1
2

,1+,-.1

B=5HIJ=BK

"
(
/
0
1
2

78+,-.)

B=5HIJ=BK

"
(
/
0
1
2

)1C+,-.1

B=5HIJ=BK

"
(
/
0
1
2

B=5HIJ=BK

1S7+,-.)

!
B5
>>
=
/

!
"
;$
%
%

6MNO(MP

+)-

2M6R4MOM/5>(4

+T-

>5/L >5/L >5/L

?
5
@A
(
(
B

+1-

!
"
#$
%
%

?
5
@A
(
(
B

+1-+,- +8*- +8*-

Figure 2. Part one of the model zoo (a) Parameterizable surrogate generator model us-

ing a CNN (b) Simple FC-ANN-based GAN (c) More complex ANN-CNN-based GAN.

Annotations: Fully Connected (FC) layer [Number of neurons], Convolutional layer

filters[kernel size]:striding, Top layer annotation: Activation function

4

Stefan Bosse

!"#$%&'()'('**
+(,&*

,-.-/"01/

234

254 6789/7:7."01/

2;4

2#4

2;4

)
'
%&
*
*

'
1
.
<
=
6
+
/"
.
8

>
"
?@
1
1
A

)
'
%&
*
*

'
1
.
<
=
6

)
A"
00
-
.

)
'
%&
*
*

2;4)
'
%&
*
*

234

2;4

)
'
%&
*
*

)
'
%&
*
*

)
'
%&
*
*

)'('**+()' '**

)'(&**)'(&**

B%B%B

B%B%B B%B%B B%B%B

B%B%B

!C$%50DA-E%6',&*

,-.-/"01/ 254 6789/7:7."01/

)
'
%&
*
*

234

2;4

'
1
.
<
=
6
+
/"
.
8

B%B%B

'
1
.
<
=
6
+
/"
.
8

'
1
.
<
=
6
+
/"
.
8

'
1
.
<
=
6

'
1
.
<
=
6

)
'
%&
*
*

B%B%B

!9$%50DA-E%&E"F.%,&*

)
'
%&
*
*

2;4

)
'
%&
*
*

B%B%B

2G4

,-.-/"01/

2'4

&
E
"
F.

'
1
.
<
=
6

&
E
"
F.

234

H H

B%B%B

I
J
8
"
:
J
A-

254

!"=$%&'()'((,&*

Figure 3. Part two of the model zoo (a) Auxiliary Conditional GAN with an additional

parameter vector y which is input of generator and either output (top) or input (bot-

tom) of discriminator (b) Styled Deep Convolutional GAN (c) Styled Adaptive Instance

Normalization GAN

3.1 FC-ANN

The simplest generator architecture consists of a set of fully connected ANN layers.
The input of the FC-ANN is the parameter vector (e.g., damage position or frequency),
and the output is the signal vector (index of the vector represents the time axis). Pure
ANN-based generator model are limited, e.g., with respect to a time-dependent feature
in the signal or the phase of the entire signal. For time series, state-based recurrent
ANN can be used, as discussed in Sec. 3.6___. We were not able to generate meaningful
pitch or catch signals with a pure ANN model.

5

Stefan Bosse

3.2 CNN

A Convolutional Neural Network (CNN) consists of basically linear kernel-based
matrix transformations (convolution C) in combination with linear or non-linear
transfer functions, finally combined with Fully Connected (FC) Artificial Neuronal Net-
works (ANN). A CNN is a sandwich structure of alternating layers (C, Pooling, FC-
NN commonly at the end). A CNN can extract features from any kind of ordered sig-
nals (time-resolved signals, frequency spectra, images). It can be used for classification
as well as for regression tasks. We use a classical CNN later as a feature predictor
model applied to raw GUW sensor signals. A typical convolution operation compress
the input vector towards a reduced feature vector (e.g., a damage position), i.e., per-
forming a down-sampling. For generative models we need the opposite, an up-
sampling, and we want to expand a feature input vector to a signal vector (or image).
For this purpose, transposed convolutional transformations (CT) can be used [6]. An ex-
ample of a generative pure FC-CNNT is shown in Figure 2 (a). It is used to generate
GUW signals fully trained by examples of real or simulated signals. The head consist
of a FC-ANN block, followed by CT-Pooling layer pairs, finally terminated by another
FC-ANN block. CNNs pose translation, rotation, and scaling invariance (in contrast to
pure FC-ANNs).

3.3 GAN

A Generative Adversarial Network (GAN) consists of two models: A generator, com-
monly driven by random process, and a discriminator, commonly with a single output.
In contrast to a surrogate model, the generator never sees original examples. It is con-
trolled during training by the discriminator model. There is commonly a combined
model coupling the generator and discriminator in a chain, finally allowing the feed-
back of the discriminator that classifies a signal in real and fake (synthetic). The
discriminator is commonly the only model block that sees real examples. During the
training, the discriminator gets a set of real and fake images from the generator classi-
fying real versa fake images. The discrimination error is used to adjust the parameters
of both models. The loss of each sub-model is handled differently. Commonly during
training, the loss of the discriminator decreases, whereas the loss of the generator in-
creases. There is a permanent competition in the training of both models. Finally, only
the generator model is used to train synthetic signals or images (or any kind of data).

The input of the generator is initially a pure random vector, e.g., with 100 elements,
each set by a uniform random generator in the range of [-1,1]. There is no control over
the output, in contrast to surrogate model with a deterministic control input vector. The
generator as well the discriminator models can be implement by FC-ANN or
CNNT/CNN architectures, as shown in Figure 2 (b)-(c).

3.4 AC-GAN

The auxiliary conditional GAN [7] is an attempt to control the generative model by
an additional conditional parameter vector. Originally used to distinguish different gen-
eration classes (e.g., different image classes) via a one-hot coded control vector, it is
assumed that this model can be used with continuous parameter control, too. The basic
architectures are shown in Figure 3. The AC-GAN can be considered as a transitional

6

Stefan Bosse

network architecture between a classical GAN and a styled GAN with a much more
woven interconnect. There are basically two different architecture variations with
respect to the control parameter vector either passed to the input of the discriminator or
output by the discriminator model (a-1 and a-2, respectively).

3.5 Styled GAN

There are basically two different controllable GAN model architectures:

1. DC-GAN: Deep Convolutional GAN [8,9] using convolutional layers only
(without FC or pooling layers) that map a latent space vector (e.g., N=100) with a
uniform random distribution on a feature space. An example application is a glyph
generator [9]. The principle architecture is shown in Figure b. The random latent
space vector Z is merged with a style vector controlling the generation process by
a FC layer (here a one-hot vector of the character code).

2. ADAIN-GAN: Adaptive Instance Normalization GAN [2] splitting the generator
into a mapping and synthesis network. The mapping network (multi-layer FC
ANN) maps the style vector Z on an intermediate latent vector w, which is the in-
put for multiple adaptive instance normalization layers controlling the generation
process. The uniform random distributed vector (Gaussian noise) is added partial-
ly to the output of multiple convolutional layers, instead passing the entire random
vector to the input of the first convolutional layer, which shown in Figure c.

Only few information is available about the detailed structure of the parameter vector
used to control the generator. Only [9] (character generator) gave details and correlated
results. The degree of entanglement of the generator control parameters is unclear. [4]
used the OpenGuidedWaves data set to train a styled GAN. The data set provides only
12 transducer and 7 (24) pseudo defect positions. Although , they use style control, the
authors only state that "the guided wave signal synthesis appears to perform well at
every step, producing believable signals via random generation". A data-driven valida-
tion was performed using a classifier that is fed with synthetic data, but a rigorous
analysis and validation is missing.

3.6 LSTM-based Models

All previous models were pure functional, i.e., the output of the network only
depends on the current input. Time series signals pose a history, i.e., a wave propaga-
tion at time t i depends on the wave at past time points t i-1. Therefore, state-based re-
current ANN networks can provide a history memory aiming to generate time series
signals. In [10], a bi-directional Long Short-term Memory (LSTM) cell network was
used to generate ECG signals. LSTM networks are suitable to generate short duration
fundamental waves with strong features (e.g., modifications of signals due to damages
or anomaly), but cannot synthesize long signal structures with weak features, which is
the case in GUW signals, especially with reflection interference and long oscillations.

7

Stefan Bosse

3.7 Simulation

To provide ground truth data for our generative model evaluations we compute data
by a 2-dim simulation using a visco-elastic wave propagation model and a simulation
framework (based on SimNDT [5], extended version 2 [11]) using an elastodynamic
finite integration technique. The simulation set-up and some computed sensor signals
are shown in Figure 4. The sensor signals are the x-axis component of the T field (ten-
sion). It is a string simplification of any real sensor model based on the piezo-electric
effect. But for the purpose of this work these simplified signals should be sufficient.
We used an aluminum plate of size 500 × 500 mm, a sending transducer placed at
(250,300) mm (10 mm diameter) and a line array of 20 receiving transducers (point
sensor) at the bottom at y=450 mm. The damage was a circular air hole with a diame-
ter of 30 mm, which was placed on position grid (50 mm distance between two grid
points). The pitch signal was a sine wave of base frequency 40 (80) kHz and a Gaus-
sian mask window (5 cycles). The simulation was carried out with a time step of 0.06
µs, in total 5000 steps (300 µs), with each tenth step recorded. In total 7 × 6 damage
positions were simulated.

!

"

#$%&'()*+$,-+&(+$.

/%0%1+

#$%&'()*+$
,2+*+34+$.

!"#$%&'()*'#+,-./01

56789
:;

6'<

9 =99 8999 8=99 >999 >=99 ?999 ?=99 @999 @=99 =999

-
,5
.6
7%
$A
B6
)
&
35
'
<

9B99C

9B99;

9B99@

9B99>

9

:9B99>

:9B99@

:9B99;

:9B99C

!"#2345.645.7#+,-./01

56789
:;
6'<

9 =99 8999 8=99 >999 >=99 ?999 ?=99 @999 @=99 =999

-
,5
.6
7%
$A
B6
)
&
35
'
<

9B99;

9B99@

9B99>

9

:9B99>

:9B99@

:9B99;

!".#$%&'()*'#+,-./01

56789
:;
'<

9 =99 8999 8=99 >999 >=99 ?999 ?=99 @999 @=99 =999

-
,5
.6
7%
$A
B6
)
&
35
'
<

9B98=

9B989

9B99=

9

:9B99=

:9B989

:9B98=

!".#2345.645.7#+,-./01

56789
:;
6'<

9 =99 8999 8=99 >999 >=99 ?999 ?=99 @999 @=99 =999

-
,5
.6
7%
$A
B6
)
&
35
'
<

9B98=

9B989

9B99=

9

:9B99=

:9B989

-8 -89
-8 ->9

Figure 4. GUW signal simulation using a 2-dim viscoelastic wave propagation model.

(Left) Simulation set-up (Right) Some example signals with and without damage (blue

areas show damage features)

4. Results

For the sake of simplicity and causality we use a GUW pitch signal as a starting
candidate to investigate the qualitative and quantitative precision of different generator
architectures. A GUW pitch (generator) signal is commonly a masked sine wave, e.g.,
using a Gaussian mask window. Such a signal is characterized by three parameters:
The period time of the base sine wave (P), the width of the mask window W, and an
optional offset of the burst (window) O. The analytical signal generator model is

8

Stefan Bosse

~I = (1, 2, .., N)

~S = sin

(

~I

P
2π

)

σ = kW

~J =
~I −O

0.5N
2σ

~M =
1

√

2πσ
e−

~J
2

2σ2

~G = ~S ~M

defined in Eq. 1.

(1)

In the first experiment a simple and well known FC-CNNT generator model is used,
which was trained with a training data set created by the analytical signal function with
additional Gaussian noise. Input is the parameter vector [P, W, O], output the signal
(N=200 points). The network architecture is given in Appendix A.

! !"

#$%&'

" (")" *" +" ,"" ,(" ,)" ,*" ,+" (""

'

"-+

"-*

"-)

"-(

"

."-(

."-)

."-*

."-+

.,-"

/0," 10," 203"
! !"

#$%&'

" (")" *" +" ,"" ,(" ,)" ,*" ,+" (""

'

,-"

"-+

"-*

"-)

"-(

"

."-(

."-)

."-*

."-+

.,-"

/0," 10,4 203"

! !"

#$%&'

" (")" *" +" ,"" ,(" ,)" ,*" ,+" (""

'

"-+

"-*

"-)

"-(

"

."-(

."-)

."-*

."-+

.,-"

/0," 10+ 203"! !"

#$%&'

" (")" *" +" ,"" ,(" ,)" ,*" ,+" (""

'

,-"

"-+

"-*

"-)

"-(

"

."-(

."-)

."-*

."-+

/0,(10," 203"

! !"

#$%&'

" (")" *" +" ,"" ,(" ,)" ,*" ,+" (""

'

,-"

"-+

"-*

"-)

"-(

"

."-(

."-)

."-*

."-+

.,-"

/04 10," 203"
! !"

#$%&'

" (")" *" +" ,"" ,(" ,)" ,*" ,+" (""

'

,-"

"-4

"

."-4

.,-"

.,-4

/04 10,4 203"

!""#$%&"'
%()*+,-./0-12

5

() * + ," ,(,)

6
7
89
-:
;
<
=
>
:?
@
-A
-B

"-C

"-*

"-4

"-)

"-3

"-(

"-,

"

%(0*+)-./,-.

7

," (" 3")" 4" *" C" +" D"

6
7
89
-:
;
<
=
>
:?
@
-A
-B

"-)"

"-34

"-3"

"-(4

"-("

"-,4

"-,"

"-"4

"

%(,*+)-./0-12

E

" 4 ," ,4 (" (4 3"

6
7
89
-:
;
<
=
>
:?
@
-A
-B

"-(4

"-("

"-,4

"-,"

"-"4

"

F@G
FHG

Figure 5. (a) Examples of pitch signals generated by the parametrized FC-CNNT

model. Parameter vector [P,O,W]=[Period, Offset, Width] (b) Normalized RMSE of the

generator (compared with analytical model) by varying one parameter. The red lines

show the training parameter ranges.

9

Stefan Bosse

Figure 5 (a) shows examples of signals generated by the FC-CNNT model. Within
the trained parameter range the reproduced signals show a high conformance with the
signals generated by the analytical model, with some additional ripple before or after
the main signal. Outside the training parameter space the generation increases
significantly as shown in Figure 5 (b). In principle, a CNN-based generator model
(with non-linear activation functions) is capable to reproduce complex signals based on
a sine wave multiplied with a Gaussian function. Some ripple is added before or after
the main wave burst. But the signal synthesizer provides no benefits over the analytical
function because it utilizes no randomization, which is typical in real measurements.

The next experiment used a FC-CNNT-GAN model to create randomly generated
pitch signals. Again the GAN model was trained with the same training data set creat-
ed by the analytical signal function with overlayed multiplicative and additive Gaussian
noise. Some example signals are shown in Figure 6. Signals with green background are
characterized as valid signals that conform with signals from the analytical model. Sig-
nals with a yellow background shown artifacts and distortion, and signals with a red
background do not conform with the analytical model.

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

&0.

&0,

&0*

&0(

&

1&0(

1&0*

1&0,

1&0.

1'0&

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

&0.

&0,

&0*

&0(

&

1&0(

1&0*

1&0,

1&0.

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

'0&

&0.

&0,

&0*

&0(

&

1&0(

1&0*

1&0,

1&0.

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

&0&+

&0&*

&0&)

&0&(

&0&'

&

1&0&'

1&0&(

1&0&)

1&0&*

1&0&+

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

'0&

&0.

&0,

&0*

&0(

&

1&0(

1&0*

1&0,

1&0.

1'0&

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

'0&

&0.

&0,

&0*

&0(

&

1&0(

1&0*

1&0,

1&0.

1'0&

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

&0*

&0)

&0(

&0'

&

1&0'

1&0(

1&0)

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

'0&

&0.

&0,

&0*

&0(

&

1&0(

1&0*

1&0,

1&0.

1'0&

!"#$%

& '& (&)& *& +& ,& -& .& /& '&&

%

'0&

&0.

&0,

&0*

&0(

&

1&0(

1&0*

1&0,

1&0.

1'0&

Figure 6. Examples of pitch signals generated by the pure random FC-CNNT-GAN

model.

Figure 7 shows the histogram distribution of the standard deviation of the generated
signal for the analytical model, the FC-CNNT, and FC-CNNT-GAN models. The stan-
dard deviation is a common GUW signal feature used in SHM applications to identify
anomalies and damages. The standard deviation of the signals from the GAN model is
strongly different from that from the analytical and CNN models. Remarkable is a con-
stant median of about 0.05 for all signals generated by the FC-CNNT-GAN model.
The analytical model produces a slightly varying median around 0 depending on the

10

Stefan Bosse

parameter settings.

!"#$%&'()*#+,-,./0/123455

!"!! !"!# !"!$!"!% !"&# !"&$!"&% !"'' !"'(!"') !"#!

*

&)

&$

&+

&'

&!

)

$

+

'

!

!"#$%&'()*#+,-67,'89":55

!"!! !"!# !"!$!"&! !"&# !"&$!"&% !"'' !"'(!"'%

*

&)

&$

&+

&'

&!

)

$

+

'

!

,-.

,/.

!"#$%&'()*#+,;77,./0/123455

!"!! !"!+ !"!0 !"&& !"&(!"&) !"'' !"'$!"'%

*

&)

&$

&+

&'

&!

)

$

+

'

!

,1.

23-45671-4 89:;4

<=>=??@>A2? <=>=??@

Figure 7. Comparison of the histogram distribution of the standard deviation of pitch

signals generated by (a) the analytical, (b) the random controlled FC-CNNT-GAN

model trained with the data from the analytical model, and (c) the surrogate FC-CNNT

model. All histograms are in the range [0,0.3].

In preparation for the experiments with experimental (simulation) catch signal data, a
predictor regression model must be created. The previous experiments relied on an al-
ready existing ground truth analytical model. But there are no accurate and complete
models for real GUW signals. Therefore, to assess the output of generator models, a
forward predictor model is required that outputs the respective parameters, e.g., the 2-
dim location of a damage or the sensor position. The predictor model uses a classical
CNN regression model. Input is one raw reshaped sensor signal (200 data points) at a
specific sensor position S(x, y). Output is the estimated parameter set. We used two in-
dependent models (with the same architecture) for the prediction of the position D(x, y)
of a damage and the sensor position S. The damage coordinates were normalized using
the scale 1:500 ([0,1]) and 1:25 ([0,1]) for the sensor index position along the sensor
line array as shown in Figure 4. The model was trained with the data set from the
simulation (42 damage positions) at a fixed frequency. The entire data set consists of
all independent sensor signals (20) and the 42 damage positions, and a base-line
damage-free case. All signals were augmented by Gaussian noise (multiplicative and
additive), and finally scaled randomly. The training of the models typically converge
after 100 epochs with a low learning rate of l=0.002 using an ADAM optimizer. The
model architecture is shown in Appendix A.

In Figure 8 prediction results of the damage position using simulated GUW signals
are shown. Estimating the damage position using only one sensor signal is challenge
and not possible with classical analytical analysis methods. The CNN predictor is able
to predict most positions accurately with a location error below 20%. The average posi-
tion values are accumulated by independent predictions from all sensors.

11

Stefan Bosse

!"#"$%&'&()*+,+)-&(.%/+0,+)-

!"

" "#$ "#% "#& "#' "#("#) "#* "#+ "#,

!

"#,

"#+

"#*

"#)

"#(

"#'

"#&

"#%

"#$

"

-"#$

!"#"$%&1&()*+,+)-&(.%/+0,+)-

."

" "#$ "#% "#& "#' "#("#) "#*

.

"#+

"#*

"#)

"#(

"#'

"#&

"#%

"#$

"

-"#$

!"#"$%&'&()*+,+)-&(.%/+0,+)-

!"

" "#$ "#% "#& "#' "#("#) "#* "#+

!
/0
1
2
3
4

"#+

"#*

"#)

"#(

"#'

"#&

"#%

"#$

"

!"#"$%&1&()*+,+)-&(.%/+0,+)-

."

" "#$ "#% "#& "#' "#("#) "#*

.
/0
1
2
3
4

"#+

"#*

"#)

"#(

"#'

"#&

"#%

"#$

"

!

.

56178

91:138

;<= ><=

Figure 8. Results of a damage location predictor model. Input is a real (simulated)

GUW signal, output are the x and y coordinate of the damage (0: no damage). (Top)

Scatter plots (Bottom) average and error plots (σ interval). The 0-labeled coordinates

are the ground truth coordinates. All coordinates are normalized with a 1:500 mm

scale.

!"#$%

& '& (&)& *& +&& +'& +(& +)& +*& '&&

%

&,(

&,-

&,'

&,+

&

.&,+

.&,'

.&,-

.&,(

.&,/

!"#$%

& '& (&)& *& +&& +'& +(& +)& +*& '&&

%

&,)

&,(

&,'

&

.&,'

.&,(

.&,)

!"#$%

& '& (&)& *& +&& +'& +(& +)& +*& '&&

%

&,)

&,(

&,'

&

.&,'

.&,(

.&,)

!"#$%

& '& (&)& *& +&& +'& +(& +)& +*& '&&

%

&,-

&,'

&,+

&

.&,+

.&,'

.&,-

.&,(

Figure 9. Examples of good and bad GUW signals generated by the pure random pro-

cess controlled FC-CNNT GAN model

In Figure 10 analysis results from the CNN predictor models applied to the FC-
CNNT GAN model are shown (assessment of the GAN model). The distribution of the
standard deviation of the generated signals is now in accordance to the standard devia-

12

Stefan Bosse

tion of the original (simulated) signals. The distribution of the predicted X- and Y-
coordinates from a random set of generated signals covers roughly the training range
(of the simulated signals). The distribution of the sensor position predictions shows a
high specialization of the GAN model to the center sensor. The training set were
equally distributed with respect to the sensor position ([0.15,0.8], the damage positions
[0.2,0.8]. The damage free base-line was augmented to about 1/3 of the entire set of
damage examples. The GAN was trained with a binary crossentropy loss function (200
epochs with a learning rate of 0.001). The model architecture is shown in Appendix A.

!"#$%&'()*#+,-./0123

!"!! !"!# !"!$!"%% !"%& !"%' !"() !"(* !")!

+

$!

*!

,!

&!

#!

)!

(!

%!

!

!"#$%&'()*#+,450,'67"833

!"!! !"!) !"!* !"%! !"%) !"%, !"(! !"() !"(, !"('

+

%(!

%!!

$!

,!

#!

(!

!

!"#$%&'()*9,:;<1,450,'67"8333

!"!! !"%# !"(* !"#% !"&# !",$!"$% !"'&

+

%(!

%!!

$!

,!

#!

(!

!

!"#$%&'()*=,:;<1,450,'67"8333

!"!! !"%& !")! !"## !"&' !"*# !"$' %"!!

+

%#!

%(!

%!!

$!

,!

#!

(!

!

-. /012" 3456-"7 -. /012" 3456-"7

8 /012"3456-7 9 /012" 3456-"7

!"#$%&'()*:,:;<1,450,'67"8333

!"!! !"%! !"(! !")! !"#! !"&! !",! !"*! !"$! !"'!

+

%(!

%!!

$!

,!

#!

(!

!

: /012"3456-7

!"#$%&'() -,:;<1,450,'67"8333

;1<.5=6>1?<4<106>1

@

;1<.5=6>1

8

9

:

Figure 10. Analysis results from the CNN predictor models applied to the FC-CNNT

GAN model. (Top) Distribution of the standard deviation of the original and the gen-

erated signals (Middle) Distribution of the X- and Y-coordinate prediction from a ran-

dom set of generated signals (Bottom) Distribution of the sensor position prediction.

The red lines indicate the training ranges.

13

Stefan Bosse

5. Discussion and Conclusions

The simple demonstrations showed the principle suitability of surrogate FC-CNN
and randomly controlled GAN architecture to generate GUW signals. But they also
showed their limitations, e.g., by producing artifacts like ripple or distorted signals,
which would not be observed in real data. Generation is only possible within the train-
ing parameter space (interpolation), but produces high errors outside the trained param-
eter space (extrapolation). GAN models produce artifacts that can have a significant
impact (distortion) on data-driven predictor models, which should be trained with gen-
erated data only. The validation of the generated signals is a challenge, and classical
correlation or distance measures are not suitable for signals containing weak features
(to be detected). Instead, data-driven predictor models can be used to predict the
parameter set of a generated signal. But the auxiliary predictor model is purely data-
driven and need to be validated, too, which is not possible in most cases as long there
is no ground-truth data set. Surrogate models show a good coverage of the trained
parameter space, whereas GAN-based models tend to narrow the parameter space to-
wards central average values. The control of the data generation of GAN models is still
a challenge, and often only entangled parameter vectors are available (i.e., single
parameters like the damage position cannot be set independently). There are doubts
that results reported by, e.g., [3,10,4], are valid with respect to the benefit of training
data-driven models.

In this work we showed results from fully controllable surrogate generators or not
controllable pure randomized GAN models. We will continue to investigate controllable
GAN architectures, and the AC-GAN model seems to be the most promising architec-
ture.

6. References

[1] Virupakshappa, K. Oruklu, E., Using Generative Adversarial Networks to Gen-

erate Ultrasonic Signals, In 2020 IEEE International Ultrasonics Symposium
(IUS) (pp. 1-3). IEEE, 2020

[2] Karras, T., Laine, S. and Aila, T., A style-based generator architecture for gen-

erative adversarial networks, Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2019

[3] Hazra, D., Byun, Y.-C., SynSigGAN: Generative Adversarial Networks for

Synthetic Biomedical Signal Generation, biology, vol. 9, no. 441, 2020

[4] Heesch, M., Mendrok, K., Dworakowski, Z., Time-Domain Signal Synthesis

with Style-Based Generative Adversarial Networks Applied to Guided Waves,
in ICAISC 2021, LNAI 12854, 2021

[5] Molero-Armenta, M., Iturrarán-Viveros, U., Aparicio, S., Hernández, M.G.,
Optimized OpenCL implementation of the Elastodynamic Finite Integration

Technique for viscoelastic media, Comput Phys Comm 185 (2014) 2683-2696

14

Stefan Bosse

[6] Gao, H., Yuan, H., Wang, Z., Ji, S., Pixel transposed convolutional networks,
IEEE transactions on pattern analysis and machine intelligence, 42(5), 1218-
1227, 2019

[7] Mirza, M., Osindero, S., Conditional Generative Adversarial Nets, arXiv, vol.
1411.1784v, 2014

[8] Radford, A., Metz, L., Chintala, S., Unsupervised Representation Learning

with Deep Convolutional Generative Adversarial Networks, arXiv:1511.06434
[cs.LG], 2016

[9] Hayashia, H., Abe, K., Uchida, S., GlyphGAN: Style-Consistent Font

Generation Based on Generative Adversarial Networks, arXiv:, 2019

[10] Zhu, F., Ye, F., Fu, Y , Liu, Q., Shen, B., Electrocardiogram generation with a

bidirectional LSTM-CNN generative adversarial network, Nature, vol. 9, no.
6734, 2019

[11] Bosse, S., SimNDT2, Revision of the GUW signal simulator SimNDT,
http://git.edu-9.de/sbosse/SimNDT2, accessed on-line, 20.4.2024

[12] Tensorflow, https://github.com/tensorflow/tfjs, accessed on-line, 20.4.2024

7. Appendix: Model Architectures

All models were implemented with the JavaScript Tensorflow software framework,
either fully implemented in JavaScript (tensorflow.js), or wrapped around the na-
tive Tensorflow API (@tensorflow/tfjs-node or @tensorflow/tfjs-

node-gpu) [12].
Nomenclature:

• Dense Layer: dense units (activation function)

• Convolution: conv2d filters [kernel size]:striding

• Convolution transposed: conv2dT filters [kernel size]:striding

• If the input shape of a convolutional layer is a line tensor such as [n,1, f], the kernel
has the shape [k,1].

7.1 FC-CNNT Generator Model Architecture

• Input: Signal parameter vector [P, W, O] (period, width, offset of signal).

• Output: Time-resolved Signal

Layer (type) Output shape Param #

===

dense 3 (linear) [3] 12

dense 40 (linear) [40] 160

dense 40 (linear) [40] 1640

15

Stefan Bosse

reshape [40,1,1] 0

conv2dT 100[3]:1 (tanh) [42,1,100] 400

max_pooling2d [21,1,100] 0

conv2dT 100[3]:1 (tanh) [23,1,100] 30100

max_pooling2d [11,1,100] 0

conv2dT 200[3]:1 (tanh) [13,1,200] 60200

max_pooling2d [6,1,200] 0

conv2d 8[3] [4,1,8] 4808

flatten [32] 0

dense 200 (linear) [200] 6600

===

Total params: 103920

Trainable params: 103920

Non-trainable params: 0

7.2 FC-CNN Predictor Model Architecture

• Input: Time-resolved sensor signal

• Output: Parameter set [X, Y] or [S] (position of sensor)

Layer (type) Input Shape Output shape Param #

==

reshape [200] [200,1,1] 0

__

conv2d 64[5]:1 [200,1,1] [196,1,64] 384

__

max_pooling2d [196,1,64] [98,1,64] 0

__

conv2d 32[5]:1 [98,1,64] [94,1,32] 10272

__

max_pooling2d [94,1,32] [47,1,32] 0

__

conv2d 32[3]:1 [47,1,32] [45,1,32] 3104

__

max_pooling2d [45,1,32] [22,1,32] 0

__

flatten [22,1,32] [704] 0

__

dense 40 (tanh) [704] [40] 28200

__

dense 40 (tanh) [40] [40] 1640

__

dense 40 (tanh) [40] [40] 1640

__

dense Y (tanh) [40] [2] 82

==

Total params: 45322

Trainable params: 45322

16

Stefan Bosse

Non-trainable params: 0

__

7.3 FC-CNNT GAN Model Architecture

Generator

• Input: Random vector Z (uniform value distribution [-1,1], |Z|=100).

• Output: Time-resolved Signal (N=200)

Layer (type) Input Shape Output shape Param #

==

dense [Z]-4 (relu) [100] [196] 19796

__

reshape [196] [196,1,1] 0

__

conv2dT 32[3]:1 (tanh) [196,1,1] [198,1,32] 128

__

conv2dT 32[3]:2 (tanh) [198,1,32] [397,1,32] 3104

__

max_pooling2d [397,1,32] [198,1,32] 0

__

conv2dT 1[3]:1 (tanh) [198,1,32] [200,1,1] 97

__

flatten [200,1,1] [200] 0

==

Total params: 23125

Trainable params: 23125

Non-trainable params: 0

__

Discriminator

• Input: Time-resolved sensor signal (N=200)

• Output: Classification Real/Fake ([0,1])

Layer (type) Input Shape Output shape Param #

===

reshape [200] [200,1,1] 0

conv2d 32[3]:2 [200,1,1] [100,1,32] 128

leaky_re_lu [100,1,32] [100,1,32] 0

conv2d 64[3]:1 [100,1,32] [100,1,64] 6208

leaky_re_lu [100,1,64] [100,1,64] 0

conv2d 128[3]:2 [100,1,64] [50,1,128] 73856

leaky_re_lu [50,1,128] [50,1,128] 0

conv2d 256[3]:1 [50,1,128] [50,1,256] 295168

leaky_re_lu [50,1,256] [50,1,256] 0

flatten [50,1,256] [12800] 0

dense 1 (sigmoid) [12800] [1] 12801

17

Stefan Bosse

===

Total params: 375360

Trainable params: 375360

Non-trainable params: 0

18

	Data-driven Parameterizable Generative Adversarial Networks for Synthetic Data Augmentation of Guided Ultrasonic Wave Sensor Signals
	Document
	Introduction
	Methodology and Goals
	Models
	FC-ANN
	CNN
	GAN
	AC-GAN
	Styled GAN
	LSTM-based Models
	Simulation

	Results
	Discussion and Conclusions
	References
	Appendix: Model Architectures
	FC-CNN T Generator Model Architecture
	FC-CNN Predictor Model Architecture
	FC-CNN T GAN Model Architecture

