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INTRODUCTION: NON-DESTRUCTIVE TESTING USING GUW 

 Detection of hidden damages, defects, and impurities (e.g., pores, cracks, delaminations) is still 
a challenge using GUW! 

 Example Impact Damage in multi-layer materials and laminates: Combination of different damages , i.e., 
cracks, delaminiation, change of material and layer thickness, damages in different layers, and so on. 

 Time-resolved GUW signals are a superposition of different wave-damage interactions! Damage 
features are hard to be isolated from the base-line signal. 

 Data-driven Modeling of damage predictor models depends strongly on measured training data. 
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Primary Goal. Automated Damage, Defect, and Impurity Detection in Materials and 
Structures including Composites using Data-driven Damage Predictor Models and GUW 
Signals.  



INTRODUCTION: DATA 

. 

 Data-driven Modeling of damage predictor models depends strongly on training data 

 But Data Space is sparse with respect  to: 
 Geometrical Properties 

 Environmental Properties 

 Sensors, Transducers, Pitch Signal Properties 

 Damage Properties 
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Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from 
Experiments, Training of ML Models using Synthetic Data only.  



INTRODUCTION: DATA 

. 

 But experimental data space is sparse:  
 Only few transducers and positions  

 Only few measuring paths 

 Only few or no variation of environmental parameters (temperature, humidity, tense and so on) 

 Only few damage cases (position, strength, size and so on) // 1 Impact Damage : 1 Specimen! 

 Limited reproducibility (drift, changes of specimens, environmental parameters, sensors… over time) 
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Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from 
Experiments, Training of ML Models using Synthetic Data only.  

Moll et al., 2019 



INTRODUCTION: DATA 

. 

 But analytical data space is sparse:  
 Oversimplification of Physical and Material Models, commonly only macroscopic aggregates 

 3-dim damage-wave interaction is hard to be modeled, especially in multi-material and multi-layer structures 

 Environmental parameters can be considered partially 

 Variation requires Monte Carlo simulation techniques 

 Boundary reflections are commonly not considered 
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Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from 
Experiments and Physical Models, Training of ML Models using Synthetic Data only.  



INTRODUCTION: DATA 

. 

 But simulation data space is sparse:  
 Oversimplification of Physical and Material Models, but visco-elastic  finite integration technique is promising 

 3-dim damage-wave interaction is hard to be simulated, especially in multi-material and multi-layer structures 

 Environmental parameters can be considered partially 

 Variation requires Monte Carlo simulation techniques, difficult to be handled in a time-discrete simulation 

 Boundary reflections are commonly considered 
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Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from 
Experiments and Physical Models, Training of ML Models using Synthetic Data only.  



INTRODUCTION:  
THE REALITY GAP 

. 

 There is always a reality gap  
between real measurements and 
 Simulation! 

 Analytical Modeling! 

 Synthetic Data Augmentation using Experimental Data? 

 Synthetic Data Generation using Random Process-driven Generative Models? 
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Secondary Goal. Synthetic Data Generation constrained and controlled by Real Data from 
Experiments and Physical Models, Closing the Reality Gap.  

2D Simulation 
Aluminum Plate 

Air-coupled US Scan 
FML Plate 



SIMULATION 

. 
 Used in this work to create a reference signal base to train and test generative models (ground truth 

data) 
 The signals should be as simple as possible without complex patterns to enable comparison of 

generated and simulated signals (are they real or silly fakes?) 
 Two classes of “simulated” GUW signals: 

 Pitch signals generated by ground-truth mathematical function (windowed sine waves) 

 Catch signals computed with a 2-dim visco-elastic finite integration method simulator (based on SimNDT) 
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SIMULATION: ANALYTICAL SIGNAL MODEL 

 Pitch (Sender) Signal 
 Base signal: Sine wave S 

 Mask: Gaussian window function  M 

 Generator function: G 
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SIMULATION: VISCO-ELASTIC WAVE PROPAGATION MODEL 

 Based on SimNDT OpenCL/GPU Solver (2-dim Finite Integration Method) 
https://github.com/mmolero/SimNDT  http://git.edu-9.de/sbosse/SimNDT2 

 1 Sender Transducer, Array of 20 Receiver Transducers, Host: Aluminum, Defect: Hole (Air) 
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https://github.com/mmolero/SimNDT


GENERATIVE MODELS 

. 
 Input: Model Parameters, e.g., for a  

Pitch Signal Model: P=(p,w,c), i.e., p:period of the sine wave, w: width (number of cycles), c:center 
position on time axis 
Catch Signal Model: P=(p,w,C,E,D,R,S), i.e., E: environment/temperature, D:damage location, S: 
sender position, R: receiver position, M: material parameters? 

 Output: GUW signal without linear dependency to training data (example) signals! 
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Goal. A parametrizable Generative Model with a random process but constrained by 
experimental (or simulated) data (GUW signals).  

GM s(t) 

P(p1,..) 

Z(random) 



GENERATIVE MODELS: SURROGATE FC-CNNT MODEL 
 Question 1: Is there is a Parametrizable Generative Model trained with example data capable to represent 

the entire parameter space? 
 Question 1.1: Is interpolation between points (examples) in the parameter space possible? 
 Question 1.2: Is extrapolation beyond convex hull points (examples) in the parameter space possible? 

 Input: Model Parameters 
 Training Data: Pitch signal from analytical model 
 Output: GUW Signal 
 Architecture: 3 Fully Connected Neuronal layers, 3 Transposed Convolutional/Max-Pooling layers, 1 

Convolutional and 1 final FC layer 
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GM s(t) P(p1,..) 

The entry 
level 



GENERATIVE MODELS: SURROGATE FC-CNNT MODEL 
 Answer 1: Yes 
 Answer 1.1: Yes 
 Answer 1.2: No 
 Physical correctness: Yes 
 Control parameters: Linear 

independent 
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The model 
diverges/explodes 
quickly if we leave 
the convex 
parameter hull!  
The surrogate model 
not learned the 
analytical model! 



GENERATIVE ADVERSARIAL NETWORK (GAN) 
 What is that? A random-process driven generative model 
 Use caes (typically)? Generation of fancy synthetic data learned from real data 
 How does it works? The generator is trained by a discriminator. The discriminator only decides if a sample is real or fake. 

The generator is trained to generate fakes (fooling us), not reals. 
 What do they require? Large amount of real data! We don’t have this in measuring sciences… 
 Are the results physical correct? No control over at all. Answered by this talk? 
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The basic 
level 



GENERATIVE ADVERSARIAL NETWORK (GAN) 

 Works that uses GAN for signal generation… 
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GENERATIVE MODELS: RANDOM GAN FC-CNNT MODEL 

 Question 2: Can a random-process driven Generative Model trained with example data produce 
realistic (“physical correct”) signal data? 

 Input: Random vector 

 Training Data: Pitch signal from analytical model 

 Output: GUW signal 

 Architecture: Generative Adversarial Network (GAN), Two Models, Generator and Discriminator. 
Generator consists of transposed Convolution layers, Discriminator is a classical FC-CNN. 
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GM s(t) Z(random) 

The next 
level 



GENERATIVE MODELS: RANDOM GAN FC-CNNT MODEL 

 Answer 2: No (not 
satisfying) 

 Physical correctness: No 

 Control parameters: No 
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The GAN produces 
artifacts and 
distortions. 
The random GAN 
model not learned 
the analytical model! 
Reason: No direct 
feedback of 
training data to the 
generator. 



GENERATIVE MODELS: RANDOM GAN FC-CNNT MODEL 

 Comparison of the 
histogram distribution of the 
standard deviation of pitch 
signals generated  

 (a) the analytical model 

 (b) the random controlled 
FC-CNNT-GAN model 
trained with the data from 
the analytical model 

 (c) the surrogate FC-CNNT 
model 

 All histograms are in the 
range [0,0.3] 
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GENERATIVE GUW MODELS: RANDOM GAN FC-CNNT MODEL 

 Question 3: Can a random-process driven Generative Model trained with example data produce 
realistic (“physical correct”) catch signal data? 

 Input: Random vector 

 Training Data: GUW signals from 2-dim simulation, different damage and sensor positions 

 Output: GUW signal vector (200 points) 

 Architecture: Generative Adversarial Network (GAN), Two Models, Generator and Discriminator. 
Generator consists of transposed Convolution layers, Discriminator is a classical CNN. 
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GENERATIVE GUW MODELS: RANDOM GAN FC-CNNT MODEL 

 Question 3.1: How can we evaluate the GUW catch signals with respect to “physical” correctens? 

 Answer 3.1: By using a CNN regression predictor model! 

 Input: GUW signal vector (200 points) 

 Output: Two Models: 1. Regression of damage location (0/0 means no damage), 2. Sensor position 

 Architecture: Classical CNN. 
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GENERATIVE GUW MODELS: RANDOM GAN FC-CNNT MODEL 

 Answer 3: Maybe, but again 
with artifacts and some 
physical incorrect signals 

 Question 3.2: What is about 
variance with respect to a 
parameter space (damage 
and sensor positions)? 
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GENERATIVE GUW MODELS: RANDOM GAN FC-CNNT MODEL 
 Answer 3.2: Promising,  

 Distribution of standard 
deviation of signal is 
comparable to ground truth 
data, but 

 X/Y damage position show 
centering! 

 Sensor position variance is 
zero! 
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GENERATIVE GUW MODELS: CONTROLLABLE RANDOM GAN 
FC-CNNT MODEL 
 Question 4: Can a random-process be constrained by a parameter vector that drives a Generative 

Model trained with example data producing realistic (“physical correct”) catch signal data? 
 Input: Random vector, Parameter vector (aka. Style vector) 
 Training Data: GUW signals 
 Output: GUW signal vector 
 Architecture: Generative Adversarial Network (GAN), Two Models, Generator and Discriminator. 

Generator consists of transposed Convolution layers, Discriminator is a classical CNN. 
 There are different sub-architectures to merge the 

random Z vector and control vector P/Y 
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GENERATIVE GUW MODELS: CONTROLLABLE RANDOM GAN 
FC-CNNT MODEL 
 Answer 4: 

Maybe 

 Input and output 
architectures of 
Z/Y(P) can differ 
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The gold 
level 

The style vector is 
commonly 
entangled, i.e., 
control of individual 
paremeters (e.g., 
damage location) is 
not possible! 



GENERATIVE GUW MODELS: STYLED GAN FC-CNN MODEL 

 Styled GAN architecture introduced by NVIDIA developers 

 Adaptive Instance Normalization GAN splitting the generator into a mapping and synthesis network  

 The mapping network (multi-layer FC ANN) maps the style vector Z on an intermediate latent vector 
w, which is the input for multiple adaptive instance normalization layers controlling the generation 
process. 

 The uniform random distributed vector (Gaussian noise) is added partially to the output of multiple 
convolutional layers, instead passing the entire random vector to the input of the first convolutional 
layer 
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CONCLUSIONS 

Data 

 Single- and Multi-Path 
Guides Ultrasonic Wave 
Signals 

 Data and feature variance 
is always limited from 
experiments! 

 Parameter space is sparse 
 Synthetic Signal Data 

from computation based on 
experimental data 

 

Methods 

 Parametrizable Surrogate 
Generative Model 

 Random-process driven 
Generative Model 

 Generative Adversarial Networks 

 Styled Generative Adversarial 
Networks 

 Convolutional Neural Networks 

 Transposed Convolutional Neural 
Networks 

Results 

 Interpolation within the trained 
parameter space is possible 

 Extrapolation fails 

 No GAN model provides 
signals with physical 
correctness (other authors 
never tested this) 

 Styled GANs are promising to 
get control over the generation 
process, but parameter vector 
is entangled (not independent). 
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Don’t trust 
data-driven 

modells! 
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